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Highlights  Abstract  

▪ An online condition monitoring system is 

designed based on broad learning system 

(BLS). 

▪ Two methods for optimizing BLS are proposed 

based on correlation and causality. 

▪ The effectiveness of the methods is verified by 

both simulation data and real data. 

 Complex systems contain numerous interacting components, thus deep 

learning methods with powerful performance and complex structure are 

often used to achieve condition monitoring. However, the deep learning 

methods are always too time-consuming and hardware-demanding to be 

loaded into complex systems for online training and updates. To achieve 

accurate and timely monitoring of complex system state, based on broad 

learning system (BLS), an online condition monitoring method is 

proposed in this paper. General BLSs are based on a randomly generated 

hidden-layer, usually perform poorly in high-dimensional data 

classification tasks. In this work, based on correlation and causality, two 

modified BLSs are proposed and mixed to establish the online 

monitoring system. Specifically, logistic regression (LR) and structural 

causal model (SCM) are considered to form rough predictions of the 

system state, thus to replace the randomly generated ones with no 

practical significance. The effectiveness of the proposed online 

monitoring method is verified by both simulation data and real data. 
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1. Introduction 

Complex system refers to the system composed of multiple 

interacting mechanical and electronic components, which have 

high reliability, complexity, and intelligence. Nowadays, 

complex system have been widely integrated in industrial 

production. To ensure the system safety, condition monitoring 

technology is widely used in complex systems 1. And, with the 

development of data-collection equipment and powerful 

computer, artificial intelligence (AI) methods have attracted lots 

of attentions in condition monitoring research 1323. For 

complex system with high dimensional coupled monitoring data, 

deep learning methods are mostly considered to establish 

condition monitoring models because of their powerful 

capabilities of effective information mining and non-linear 

relationship fitting 10. 

For example, with convolutional neural network (CNN),  

a condition monitoring model of rolling bearing was established 

in 31. The minimum entropy deconvolution (MED)-based CNN 

was proposed in 24 for fault diagnosis of axial piston pumps. In 

25, based on radial basis function neural network (RBFNN), an 

effective power system monitoring and control method was 

proposed. In 19, based on EMD and deep neural network (DNN), 

hand-crafted (low-level) features and high-level features were 
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extracted and fused for condition monitoring of machines. And, 

by using deep belief networks (DBNs),  

a fault detection method for axial piston pumps was proposed in 

25. 

The effectiveness of deep learning methods had been 

justified in many state-of-art research. And, the successive 

proposals of advanced and powerful deep learning methods 

provide effective ways to further improve the model accuracy 

517. But, the condition monitoring models are commonly 

trained in an offline manner. This is because that, to obtain 

satisfactory prediction performances, model training and 

updating process require much computing resources and time. 

Powerful computers are difficult to load into the complex 

systems, and even if they can, their onboard security and 

availability will become new challenges. For complex systems, 

it is usually required that the condition monitoring model can be 

updated in an online manner to adapt the variable operation 

environment. Therefore, online models with high computational 

efficiency have gradually attracted the attention of researchers. 

Among them, broad learning system (BLS) proposed in 2 

has become one of the most popular methods. There is only one 

hidden-layer in BLS for feature extraction, which is composed 

of initial node groups, characteristic node groups and 

incremental node groups. The model training process is to 

calculate the pseudo-inverse matrix of the hidden layer nodes. 

And, the model update process is achieved by adding 

incremental node groups in the hidden-layer,which is  

a incremental learning process. In the incremental learning 

process, i.e. when adding an incremental node group, the whole 

BLS model does not need to be retrained. By calculating the 

pseudo inverse matrix of the added incremental node group, the 

BLS can be updated efficiently 23. Thus, BLSs usually have 

high training and updating efficiency. 

However, the hidden-layer nodes ( specially the initial node 

groups) in BLS are randomly generated from the input features, 

resulting in that BLSs perform unsatisfactory in high-

dimensional data classification tasks. To fully explore the 

available information of the high-dimensional data, the hidden-

layer in BLS is need to be set with a large number of nodes 9. 

And, with the increase of the number of BLS hidden-layer nodes, 

the improvement of model performance is no longer obvious 

after reaching a certain level (the experiment results can be seen 

in 2). As mentioned in 9, the low efficiency of feature extraction 

process is one of the main limitations of BLS. Thus, it is 

necessary to explore methods for improving feature extraction 

efficiency of BLS models. 

The existing methods includes initial node optimization, 

structure compactness, ensemble learning, etc 9. Among them, 

initial node optimization is the most convenient method without 

increasing the computational burden. At present, most state-of-

art studies focus on model input optimization, and can be 

categorized into two types. One focuses on integrating powerful 

feature extraction methods with BLS for processing time series, 

text, image data. For example, CNN is commonly used as the 

feature extractor to process image data 1627, and recurrent 

neural network (RNN) is used for processing text data 7. The 

other is committed to feature extraction of the original data for 

improving the effectiveness of the input data in BLS. 

Specifically, feature extraction methods are used to simplify the 

input data of BLSs for improving model training and updating 

efficiency, including variational mode decomposition (VMD) 

33, Hilbert transform (HT) 33, singular value decomposition 

(SVD) 11, principal component analysis (PCA) 32, etc. 

These above studies rely on the performance of the used 

feature extraction methods to mine fault information. It is 

difficult to ensure that all valuable information in high-

dimensional data of complex system can be effectively 

extracted. And, the feature extraction efficiency of BLS itself 

has not been improved. 

In this work, based on the perspectives of correlation and 

causality, two modified BLSs (MBLS) are proposed to improve 

the overly random generation of the initial node groups in BLS. 

The MBLS based on correlation (logistic regression, LR) uses 

all the variables to avoid information loss. And, the MBLS 

based on causality (structural causal model, SCM) is stable. For 

synthesizing the advantages, the two MBLSs are integrated to 

construct the condition monitoring model. Moreover, to obtain 

more practical causal information of complex systems, the 

existing causal discovery method is improved by adding 

empirical constraints. Based on the simulation data, it is proved 

that the proposed method has some certain universality in 

complex system condition monitoring. And, using actual 

monitoring data of an HST brake control system, the high 

accuracy and efficiency of the proposed condition monitoring 
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method are confirmed. 

The remainder of this paper is organized as follows. The 

proposed online condition monitoring method is described in 

Section 2. Section 3 analyzes the model applicability. And, 

Section 4 illustrates the application results in a real high-speed 

train. Conclusions and some further research directions are 

drawn in Section 5. 

2. Online condition monitoring framework for complex 

systems 

The structure of the proposed online condition monitoring 

framework for a complex system is shown in Figure 1. Firstly, 

sensors and monitoring tools are equipped to collect the 

historical monitoring data of the complex system. And, the 

categorical and numerical variables in the heterogeneous 

monitoring data are en-coded into numerical features. Then, 

based on LR and SCM, two modified BLSs (MBLS) are 

proposed to improve the feature extraction efficiency of the 

initial node groups in BLS. Specifically, the calculation for-

mula of the initial node groups is replaced by the LR equation 

or the structural causal equation (SCE) to ob-tain efficient fault 

characteristics. Moreover, for improving the performance of the 

condition monitoring method, the two MBLSs are integrated to 

detect the real-time health state of the complex system. The inte-

grated model is recorded as Mix-MBLS.

 

Fig.1. The online condition monitoring framework for an example complex system.

It should be noted that the simple and interpretable models, 

the LR and the SCM are adopted to make the feature extraction 

process transparent. The LR is based on the correlation of 

variables, and can use all monitoring variables to avoid 
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information loss. The SCM is based on causality and has 

stronger interpretability and stability. However, it only takes 

into the cause features of the system state, which may lead to 

information loss. In order to synthesize the advantages of the 

two models, the integrated model Mix-MBLS is obtained by 

fusing the two MBLSs at the decision level using parallel 

method. Specifically, if any MBLS output is fault state, the final 

prediction result of the system health state is fault. 

2.1. The basic BLS 

There have been many theoretical foundations and useful 

variants since the emergence of BLS 9. Since this work focuses 

on optimizing the initial node groups in the BLS hidden-layer, 

the basic BLS model is considered in this work. This work will 

be committed to improve the effectiveness and efficiency of 

BLS. In fact, the proposed optimizations for the initial node 

groups can also be adopted in other variants of BLS.

 

Fig.2. Structural overview of the basic BLS with incremental learning.

The hidden-layer of a basic BLS is composed of three node 

groups, which are initial node groups, characteristic node 

groups and incremental node groups, as shown in Figure 2. 

These initial node groups Z1, Z2, ..., Zn 

(𝒁𝑛 =
𝛥
(𝒁1, 𝒁2, ⋯ , 𝒁𝑛)) are nonlinear feature maps based on the 

original input data X = (X1, X2, ..., XK), which can be calculated 

by Eq. 1. 

𝐙𝑖 = 𝜑(𝐗𝐖𝑒𝑖
+ 𝛃𝑒𝑖 ),𝑖 = 1,2, . . . , 𝑛  (1) 

In Eq. 1, 𝜑() is a nonlinear mapping function called 

activation function, Zi is the i-th mapped feature group in Zn. 

These two matrices, 𝑾𝑒𝑖
and 𝜷𝑒𝑖 , are separately the weight 

matrix and the corresponding deviation matrix, and are both 

generated randomly. For the original input data (X, Y) (𝑿 ∈

𝑹𝑁×𝐾, 𝒀 ∈ 𝑹𝑁×𝑄), let 𝑾𝑒𝑖
∈ 𝑹𝐾×𝜈and 𝜷𝑒𝑖 ∈ 𝑹1×𝑉, then the 

mapped feature group Zi has 𝜈 nodes. 

The characteristic node groups E1, E2, ..., Em 

(𝑬𝑚 =
𝛥
(𝑬1, 𝑬2, . . . , 𝑬𝑚) ) are nonlinear feature maps of the 

initial node groups, which can be calculated by Eq. 2. 

𝐄𝑗 = 𝜉(𝐙
𝑛𝐖ℎ𝑗

+ 𝛃ℎ𝑗 )  (2) 

In Eq. 2, Ej is the j-th characteristic node group, 𝜉() is an 

activation function as in Eq. 1. The weight matrix 𝑾ℎ𝑗
 and the 

corresponding deviation matrix 𝜷ℎ𝑗
  are also both generated 

randomly. 𝑾ℎ𝑗
∈ 𝑹𝑛𝑣×𝜂  and 𝜷ℎ𝑗

∈ 𝑹1×𝜂 , the characteristic 

node group Ej contains 𝜂 nodes. 

Then, the BLS model can be expressed as:  

𝐘 = 𝐇𝐖 = (𝐙𝑛|𝐄𝑚)𝐖  (3) 

where 𝑾 ∈ 𝑹𝐿×𝑄  is the node weight matrix to connect 𝑯 =

(𝒁𝑛|𝑬𝑚) ∈ 𝑹𝑁×𝐿 to the output 𝒀 ∈ 𝑹𝑁×𝑄, 𝐿 = 𝑛𝜈 + 𝑚𝜂 is the 

total number of hidden-layer nodes in the BLS. 

BLS model fitting is essentially to obtain the analytical 

solution with the pseudo inverse matrix of hidden-layer nodes 

based on (X, Y). Based on the least square method with 𝑙2-norm 

regularization, the analytical solution of a classical BLS without 

incremental learning is shown in Eq. 4: 

𝐖 = {
𝐇

𝑇𝑇
−1 𝐍<𝐋(𝑐𝐈 + 𝐇𝑇−1

𝑇 𝐍≥𝐋  (4) 

where I is the L-order identity matrix, the value c represents the 

penalty coefficient of the 𝑙2-norm regularization term. 

When the classical BLS model cannot achieve the required 

accuracy, incremental node groups can be inserted to improve 

the model performance. Incremental node groups are the 

supplement to the characteristic node groups, which can be 

considered as the characteristic node group after the m-th. Thus, 
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the first incremental node group E1+ with p nodes can be 

calculated analytically by Eq. 5: 

𝐄1+ = 𝜉(𝐙
𝑛𝐖ℎ𝑚+1 + 𝛃ℎ𝑚+1 )  (5) 

with the weight matrix 𝑾ℎ𝑚+1
∈ 𝑹𝑛𝑣×𝑝 and the deviation 

matrix 𝜷ℎ𝑚+1
∈ 𝑹𝑛𝑣×1. 

The new BLS model can be expressed as: 

𝐘 = (𝐇|𝐄1+)𝐖
𝑚+1 =

Δ
𝐇𝑚+1𝐖𝑚+1  (6) 

where 𝑯𝑚+1 = (𝑯|𝑬1+)  is the new hidden-layer nodes and 

𝑾𝑚+1 is the new node weight matrix. 

Then, 𝑾𝑚+1 ∈ 𝑹(𝐿+𝑝)×𝑄 can be obtained by Eq. 7: 

𝐖𝑚+1 = [𝐖 −𝐃𝐁𝑇

𝐁𝑇
]   (7) 

where 𝑫 = (𝑯)+𝑬1+, 𝑪 = 𝑬1+ −𝑯𝑫, 𝑩
𝑇{
(𝑪)+, 𝑪≠𝟎

(1+𝑫𝑇
−1𝑇

+

, (*)+ is 

the pseudo inverse of matrix *, and 𝟎 ∈ 𝑹1×𝑝 is the zero matrix 

where all the elements are 0. 

Similarly, 𝑾𝑚+2 can be calculated based on 𝑾𝑚+1 after 

adding the second incremental node group. It can be seen that 

the pseudo inverse of previous nodes can be used directly, only 

the pseudo inverse of the additional incremental node group 

needs to be calculated, thus the training process can be greatly 

accelerated 23. 

2.2. Optimizations of the initial node groups in BLS 

It can be seen from section 2.1 that the initial node groups in the 

basic BLS are generated with random weight matrix 𝑾𝑒𝑖
and 

deviation matrix 𝜷𝑒𝑖 . Therefore, lots of initial node groups are 

usually required to ensure the prediction accuracy of the model, 

which is likely to make model training and updating time-

consuming. Based on correlation and causality, this paper 

proposes two strategies for improving efficiency and 

effectiveness of the initial node groups. 

2.2.1. Initial node groups generation based on logistic 

regression 

To improve the feature extraction efficiency, the convenient and 

interpretable logistic regression (LR) equation is applied to 

generate the initial node groups. LR 6 is a kind of generalized 

linear models, which can create a mathematical model based on 

independent input variables to predict the occurrence 

probability of the event corresponding to the dependent variable. 

The goal of LR is to find the best-fitting linear model to describe 

the relationship of the probability distribution of the binary 

category dependent variable Y with the independent input 

variables X1, X2, ..., XK. 

The LR model can be defined as: 

𝑌′ = 𝑏0 + ∑ 𝛼𝑖𝑋𝑖
𝐾
𝑖=1 = 𝑏0 + 𝛼1𝑋1 + 𝛼2𝑋2+. . . +𝛼𝐾𝑋𝐾   (8) 

𝑌′ = 𝑙𝑛(
𝑃(𝑌=1)

𝑃(𝑌=0)
) = 𝑙𝑛(

𝑃(𝑌=1)

1−𝑃(𝑌=1)
)  (9) 

where b0 is the constant term, α1, α2, ..., αK are the regression 

coefficients. P(Y = 1) and P(Y = 0) are the probabilities of Y in 

class 1 and class 0, respectively. 

The ubiquitous strong correlation among the raw features 

from a complex system may lead to the regression coefficients 

contrary to the actual situation. Therefore, in this paper, 

principal component analysis (PCA) is first adopted to reduce 

the dimension of the raw features to obtain disentangled features. 

A LR model can be established based on the principal 

components, and then by substituting the principal component 

score function into the LR model, the relationship between each 

raw features Xi (i=1, …, K) and P(Y = 1) can be obtained. The 

specific calculation process is as follows: 

① Calculate the correlation coefficient matrix Φ of the 

raw feature data X = (X1, X2, ..., XK), as well as all the 

eigenvalues λ1, λ2, ..., λk and the corresponding eigenvectors μ1, 

μ2, ..., μK of Φ. Assume that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐾 ≥ 0 , 𝝁𝑖 =

(𝑢𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝐾)
𝑇 , i =1, 2, ..., K; 

② Calculate the variance contribution rate vcri of each 

eigenvalue λi (i =1, 2, ..., K) and the cumulative contribution rate 

ccri of the first i features; 

𝑣𝑐𝑟𝑖 =
𝜆𝑖

∑ 𝜆𝑗
𝐾
𝑗=1

    (10) 

𝑐𝑐𝑟𝑖 =
∑ 𝜆𝑠
𝑖
𝑠=1

∑ 𝜆𝑗
𝐾
𝑗=1

    (11) 

According to the eigenvalues λ1, λ2, ..., λk and the 

corresponding eigenvectors μ1, μ2, ..., μq of the first q features 

when ccrq is greater than or equal to 85%, the q principal 

components F1, F2, ..., Fq can be calculated by Eq. 12. 

𝐅 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑞) = 𝐗(𝚽
−1𝐀) = (𝑋1, 𝑋2, ⋯ , 𝑋𝐾)(𝚽

−1𝐀) (12) 

𝐀 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑞
𝑎21 𝑎22 ⋯ 𝑎2𝑞
⋮ ⋮ ⋱ ⋮
𝑎𝐾1 𝑎𝐾2 ⋯ 𝑎𝐾𝑞

) =

(

 
 

𝑢11√𝜆1 𝑢21√𝜆2 ⋯ 𝑢𝑞1√𝜆𝑞

𝑢12√𝜆1 𝑢22√𝜆2 ⋯ 𝑢𝑞2√𝜆𝑞
⋮ ⋮ ⋱ ⋮

𝑢1𝐾√𝜆1 𝑢2𝐾√𝜆2 ⋯ 𝑢𝑞𝐾√𝜆𝑞)

 
 

            (13) 
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where Φ-1 is the inverse matrix of the correlation coefficient 

matrix Φ. 

③ Using LR, the regression equation of principal 

components 𝐹1, 𝐹2, ⋯ , 𝐹𝑞 and Y can be obtained as shown in Eq. 

14. 

𝑙𝑛(
𝑃(𝑌=1)

1−𝑃(𝑌=1)
) = 𝑏0 + ∑ 𝛼𝑖𝐹𝑖

𝑞
𝑖=1    (14) 

And, by substituting Eq. 12 into Eq. 14, the LR equation 

between the raw features X1, X2, ..., XK and Y can be obtained as: 

𝑙𝑛(
𝑃(𝑌=1)

1−𝑃(𝑌=1)
) = 𝑏0 + ∑ 𝑐𝑖𝑋𝑖

𝐾
𝑖=1    (15) 

Based on the regression coefficient vector (c1, c2, ..., cK) and 

constant term b0 from Eq. 15, the value range of column vector 

in the weight matrix 𝑾𝑒 𝑖 and the deviation matrix 𝜷𝑒 𝑖 can be 

set. To be specific, define the coefficient vector interval as [(c1-

ε, c2-ε, ..., cO-ε)T, (c1+ε, c2+ε, ..., cO+ε)T], the offset interval as 

[b0-ε, b0+ε], in where ε is a range parameter greater than 0. This 

paper holds that the LR coefficients are likely to be consistent 

with practical experience, so the maximum positive value that 

does not destroy practical experience of coefficients is selected 

as ε, i.e. if the influence of a variable on system fault is positive 

(negative), its coefficient will still be positive after subtracting 

(adding) ε. Not all variables can be judged by experience 

whether the coefficient should be positive or negative, so only 

the variables that can provide the basis for ε value are 

considered. 

Let the K-dimensional column vectors of 𝑾𝑒 𝑖 be taken from 

the coefficient vector interval, and the 1-dimensional column 

vectors of 𝜷𝑒 𝑖 be taken from the offset interval. In this case, the 

initial node groups Z1, Z2, ..., Zn can be calculated by Eq. 16. 

𝐙𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐗𝐖𝑒𝑖
+ 𝛃𝑒𝑖 ) = 1/(1 + 𝑒𝑥𝑝( −

(𝐗𝐖𝑒𝑖
+ 𝛃𝑒𝑖 ))),𝑖 = 1,2, . . . , 𝑛  (16) 

here Zi is the i-th initial node group in Zn, and Sigmoid(*) is the 

Sigmoid function with value range being (0, 1). 

In this paper, the LR equation is considered as the basis 

feature extractor mainly because of its convenience. In fact, 

other regression algorithms can also be selected to obtain the 

regression coefficients of each variable. However, due to the 

low interpretability of the regression coefficients in most other 

regression algorithms, there will be a lack of practical guidance 

when setting the value ranges of 𝑾𝑒 𝑖 and 𝜷𝑒 𝑖. In addition, for 

a multi-classification task, each class will be identified using a 

LR equation, and the initial node groups generated based on 

different LR equations are the rough predictions of different 

classes. And, different LR equations are the basic feature 

extractors for detecting different faults. 

2.2.2. Initial node groups generation based on causality 

Considering causality rather than correlation, interpretable and 

effective features can be obtained based on structural causal 

model (SCM). In this case, the calculation equation Eq. 1 to get 

the initial node groups can be replaced by the structural causal 

equation (SCE). 

Causality, which is objective and sequential, reveals the 

spatial structure of data and can extract stable and accurate 

information than the commonly used correlation. Based on 

causality, the interpretability and stability of data-driven models 

can be effectively improved for practical applications. Data-

based causal discovery, which can excavate the fundamental 

causal relationship in the observed data, had been proposed to 

effectively replace the infeasible controlled experiments 20. 

The data-based causal discovery algorithms can be roughly 

divided into three categories: constraint-based, score-based and 

hybrid algorithms 8. Constraint-based algorithms are also called 

conditional independence methods, which have strong 

statistical theory support, thus have been widely used and 

improved since they were proposed. Among them, the 

commonly used algorithms include PC (Peter and Clark) 

algorithm 22, fast causal inference (FCI) algorithm 28, etc. 

Considering that finding causality by constraint-based 

algorithms has strong interpretability and mathematical process, 

and sufficient causal features related to system health status can 

be collected by using advanced sensors and monitoring tools 

(assuming there are no unmeasured confounders), PC algorithm 

is applied in this paper to analyze the causality between 

variables X1, X2, ..., XK, Y. 

The output of PC algorithm is normally a completed 

partially directed acyclic graph (CPDAG), which is composed 

of nodes, directed edges and undirected edges (as shown in 

Figure 3). An undirected edge between two nodes means that 

there is a causal relationship between the two variables but the 

cause can not be identified with the available data. Under causal 

sufficiency assumption, PC algorithm can be divided into two 

parts: determining the skeleton (undirected graph) and 
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determining a CPDAG (the details can be seen in 22). 

 

Fig. 3. An example causal CPDAG. 

In this paper, empirical constraints are added to the PC 

algorithm to get a more stable and practical causal network. At 

present, there are few relevant studies on adding empirical 

constraints to PC algorithm, and most all of them used the 

method of constraining the model search space proposed in 15. 

The method in 15 is used and improved according to the 

empirical constraints designed in this work, which makes 

empirical constraints quickly and conveniently added to PC 

algorithm. Considering the limited expert experience that can 

be provided in complex systems, the added empirical 

constraints in this work are divided into the following two types: 

① Path constraint. Constrain that there is no direct 

causal relationship between variable A and variable B, thus there 

is no edges between node A and node B in the causal network; 

② Direction constraint. Constrain that variable A is the 

cause of variable B, thus there are only causal paths from A to 

B in the causal network. The causal path is the combination of 

linked edges from cause node to result node, which includes 

direct causal paths and indirect causal paths. 

The above empirical constraints can be achieved by the 

following three steps: 

① Determining the skeleton under path constraints. 

By deleting the edges corresponding to the path constraints 

in the determined skeleton of PC algorithm, this step can be 

implemented quickly (as shown in Figure 4); 

② Extending the skeleton to a CPDAG under the 

direction constraints. 

This step is implemented by adding direction determining 

rules before the four ones in the second step of PC algorithm, 

the process is shown in Figure 5. 

③ Verifying whether all the direction constraints are 

satisfied. 

If a path does not meet a direction constraint, we can adjust 

the parameters of PC algorithm or delete the least relevant edge 

on the path.

 

Fig. 4. The pseudocode to determine skeleton under path constraints. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 2, 2024 

 

 

Fig. 5. The pseudocode to extend the skeleton to a CPDAG under direction constraints.

 

Fig. 6. A causal network example of {X1, X2, ..., XK, Y}. 

Assume that the causal network of {X1, X2, ..., XK, Y} 

obtained by the PC algorithm with empirical constraints is 

shown in Figure 6. In this section, to optimize the initial node 

groups in BLS, causal inference is carried out based on the 

causal network for exploring the causal effects of X1, X2, ..., XK 

on Y. In recent years, as causality has been widely concerned for 

exploring the interpretability of data-driven models, there have 

been a lot of studies on causal inference 18. In this work, the 

SCM 2021, which is simple and effective, is used to calculate 

the impact of monitoring features on the health state of the 

system. SCM usually assumes that the target node is directly 

affected by a self random variable in addition to the ancestor 

nodes in the causal network. For causal network in Figure 6, the 

causal effects of X1, X2, ..., XK on Y can be described by Eqs. 17 

and 18: 

𝑃(𝑌 = 1) = 𝑓𝑌(𝑋2, . . . , 𝑋𝑖−1, 𝑓𝑋𝑖(𝑋1, 𝑧𝑋𝑖), 𝑋𝑖+1, , . . . , 𝑋𝐾 , 𝑧𝑌)  (17) 

𝑋𝑗 = 𝑓𝑋𝑗(𝑧𝑋𝑗), 𝑗 = 1,2, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝐾     (18) 

where 𝑧𝑋1 , 𝑧𝑋2 , . . . , 𝑧𝑋𝐾 , 𝑧𝑌  are respectively random variables 

that directly affect X1, X2, ..., XK, Y, which are often considered 

as white noises and omitted when training SCM. 𝑓𝑋𝑠(∗), 𝑠 =

1,2, . . . , 𝐾  and 𝑓𝑌(∗) are the causal models that generate X1, 

X2, ..., XK and Y. 

When training the SCM (the causal models) based on actual 

data, different mapping functions can be selected to improve the 

mapping effect, including linear function, power function, 

exponential function, etc. Similarly, set intervals for all 

parameters in the SCM, the initial node groups in BLS can be 

optimize by randomly generating feature maps with different 

parameter combinations. Take linear functions as an example, 
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after trained by the input data (X, Y), the SCM of X1, X2, ..., XK 

on Y is: 

𝑃(𝑌 = 1) = 𝑎2𝐗2+. . . 𝑎(𝑖−1)𝐗𝑖−1 + 𝑎𝑖(𝑎1𝐗1) +

                                      𝑎(𝑖+1)𝐗𝑖+1+. . . +𝑎𝐾𝐗𝐾                            (19) 

where ai is the casual effect of Xi on Y. 

Thus, the initial node groups Z1, Z2, ..., Zn can be calculated 

by Eqs. 20 and 21: 

𝐙𝑖 = [𝐙𝑖1, 𝐙𝑖2 , . . . , 𝐙𝑖𝜈],𝑖 = 1,2, . . . , 𝑛  (20) 

𝐙𝑖𝑗 = 𝑎2𝑗𝐗2+. . . 𝑎(𝑖−1)𝑗𝐗𝑖−1 + 𝑎𝑖𝑗(𝑎1𝑗𝐗1) +

                                    𝑎(𝑖+1)𝑗𝐗𝑖+1+. . . +𝑎𝐾𝑗𝐗𝐾 ,𝑗 = 1,2, . . . , 𝜈(21) 

here Zi is the i-th initial node group in Zn, Zij is the j-th feature 

node in Zi. And, aij is randomly obtained from the casual effect 

interval [ai-ε, ai+ε], in where ε is also a range parameter 

constrained by existing experience as shown in section 2.2.1. 

2.2.3. Some other details 

To improve the model robustness, sparse matrix technique is 

used for the initial node groups in the proposed methods. The 

initial node groups obtained based on LR or SCE are processed 

by sparse matrix technique to make the differences between 

nodes more significant. 

Moreover, as verified in many existing studies, the causality 

is more stable than the correlation, thus the initial node group 

generation method based on causality may be more stable and 

conducive to the analysis of fault path. But, the data information 

used in SCM is often incomplete as shown in Eq. 19. 

Considering that the actual application scenarios are complex 

and changeable, which makes it impossible for a single method 

to guarantee the best results contiguously, this paper integrates 

the MBLSs based on regression model and causality to get the 

final system condition detection model, so as to improve the 

accuracy and robustness of fault detection. 

3. Analysis on applicability 

Since few heterogeneous complex system monitoring data is 

publicly available, and method applicability analysis needs 

based on diversified data, so various simulation data are 

generated in this section. According to Eq. 22 (called generating 

equation group), simulation data of the sub-application of an 

integrated modular avionics (IMA) software platform in Figure 

7 can be generated. 

 

Fig. 7. The architecture of the sub-application. 

{
 
 
 

 
 
 

C1 = 𝑈1
𝐶2 = 𝑈2 + 𝑎12𝐶1
𝐶3 = 𝑈3 + 𝑎13𝐶1

𝐶4 = 𝑈4 + 𝑎24𝐶2 + 𝑎34𝐶3
𝐶5 = 𝑈5 + 𝑎25𝐶2
𝐶6 = 𝑈6 + 𝑎36𝐶3
𝐶7 = 𝑈7 + 𝑎37𝐶3

𝐶8 = 𝑈8 + 𝑎48𝐶4 + 𝑎58𝐶5 + 𝑎68𝐶6 + 𝑎78𝐶7

      (22) 

where C1 is the GPS and INS data analysis module, C2 and C3 

are separately the GPS and INS data correction modules, C4 is 

the data fusion module, C5 and C6 are separately the GPS and 

INS data calculation modules, C7 is a backup of C6, C8 is the 

subsystem status output and display module, aij is the edge 

weight (marked in Figure 7) of Ci to Cj, Ui is an exogenous 

variable which is related to the health state of Ci. Considering 

that there is no causal relationship between the health status of 

the system components, Ui is assumed to be white noise with 

mean value being 0 and variance being σi. 

With (σ1, σ2, ..., σ8) = (4, 3, 3, 3, 2.5, 4, 1.5, 1)×10^(-2), and 

the fault threshold for C8 being 0.1, 10000 samples are 

generated as the sampling population. It is supposed that when 

C8 is greater than 0.1, the sub-application shows system failure. 

By using PC algorithm, as shown in Figure 8(a), the causal 

network of the simulation data is consistent with the architecture 

of the sub-application. And, when simulate the imbalance 

monitoring in practical applications, the causal network of the 

sampled simulation data is obtained (as shown in Figure 8(b)). 

Due to the simple mechanism of system modules, the gap 

between the two causal networks is small. 
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      (a)                                              (b) 

Fig.8. The causal network of the simulation data. 

Based on the resampled simulation data (recorded as 

simulation data-1), under 5-fold cross-validation, the 

performances of the proposed Modified-BLSs (MBLSs) and 

traditional BLSs (the basic BLS and the BLSs respectively 

combined with PCA and sparse auto-encoder (SAE)) are shown 

in Table 1. 

Table 1．Comparison performances of different BLSs on 

simulation data-1 

Models Average Precision Average Recall Training time(s) 

MBLS1 0.95568 0.83333 0.136 

MBLS2 0.94737 0.82609 0.123 

BLS 0.94096 0.81587 0.159 

PCA-BLS 0.95203 0.81470 0.146 

SAE-BLS 0.94613 0.82750 0.157 

It can be seen that the performances of different BLS models 

are similar. It is because of that the basic BLS with a fairly 

simple structure can well extract the fault information from 

simulation data-1. Here, MBLS2 is based on the causal network 

in Figure 8(b). Under the assumed completely linear data, the 

feature information is closely interconnected, so MBLS2 can 

have a good performance. In fact, generally, if and only if  

a more practical causal network is obtained, the causality based 

MBLS (i.e. MBLS2), which follows actual and stable causal 

effects, can be accurate and stable. When prior knowledge is 

limited, MBLS2 will contain incomplete feature information. In 

this case, the LR based MBLS (i.e. MBLS1) can extract 

information more comprehensively. Therefore, the two different 

methods are integrated in complex system condition monitoring. 

For comparing the performances of different BLSs on high-

dimensional data, a sparse weighted matrix is designed to 

represent the influence mechanism between K components of  

a virtual complex system (as shown in Eq. 23). The matrix A is 

set as almost an upper triangular matrix, and the last component 

CK represents the system fault state. 

𝐀 = [

𝑎11 𝑎12 ⋯ 𝑎1𝐾
𝑎21 𝑎22 ⋯ 𝑎2𝐾
⋮ ⋮ ⋱ ⋮
𝑎𝐾1 𝑎𝐾2 ⋯ 𝑎𝐾𝐾

]  (23) 

where aij is the influence of component Ci on component Cj. 

Similarly, the feature value of a component Ci is affected by 

its parent node components and an exogenous variable Ui 

(related to its own state). Assuming that the causal effects 

between the components are all linear functions, then the K-

dimension monitoring data of the virtual complex system can 

be obtained by Eq. 24. 

𝐂 = [𝐶1, 𝐶2, . . . , 𝐶𝐾] = (𝐈 − 𝐀
′)−1𝐔  (24) 

To make the generated data not completely linear, few 

nonlinear mappings are added to the generating equation group. 

And, several component features of the generated data are 

piecewise discretized to simulate the heterogeneous monitoring 

data of the complex system. When K is 10, 20, 50 and 100 

respectively, under 5-fold cross-validation, the comparison 

performances of different BLSs are shown in Tables 2, 3, 4 and 

5. In addition, standard deviations of the generalization 

Precision and Recall values under 5-fold cross-validation are 

also compared to roughly analyze the model stability. The 

overall samples of generated data are used directly in this step. 

The simulation datasets 2 to 5 are all clean and balanced, 

leading to that each model can achieve an ideal effect by adding 

hidden layer nodes. Thus, the model structure optimization will 

be stopped once the model average precision and average recall 

reach above 0.9.

Table 2．Comparison performances of different BLSs on simulation data-2. 

Models Average Precision Average Recall Training time(s) 
standard deviation 

of Precision 

standard deviation 

of recall 

MBLS1 0.91561 0.91013 0.181 0.00744 0.00379 

MBLS2 0.91319 0.91143 0.175 0.00337 0.00603 

BLS 0.91060 0.90988 0.184 0.01422 0.00983 

PCA-BLS 0.91123 0.90731 0.172 0.01426 0.00906 

SAE-BLS 0.90988 0.91039 0.197 0.01018 0.00852 
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Table 3．Comparison performances of different BLSs on simulation data-3. 

Models Average Precision Average Recall Training time(s) 
standard deviation 

of Precision 

standard deviation 

of recall 

MBLS1 0.93665 0.93419 0.235 0.00369 0.00749 

MBLS2 0.93843 0.93839 0.230 0.00390 0.00512 

BLS 0.93542 0.93352 0.589 0.01281 0.01076 

PCA-BLS 0.93416 0.93099 0.462 0.01059 0.00888 

SAE-BLS 0.93927 0.93748 0.609 0.01080 0.01355 

Table 4．Comparison performances of different BLSs on simulation data-4. 

Models Average Precision Average Recall Training time(s) 
standard deviation 

of Precision 

standard deviation 

of recall 

MBLS1 0.94645 0.93866 0.429 0.00802 0.00772 

MBLS2 0.95068 0.94436 0.350 0.00531 0.00465 

BLS 0.94313 0.93594 1.926 0.00904 0.01420 

PCA-BLS 0.93749 0.94159 1.315 0.00743 0.01493 

SAE-BLS 0.94309 0.93500 1.977 0.01372 0.01083 

Table 5．Comparison performances of different BLSs on simulation data-5. 

Models Average Precision Average Recall Training time(s) 
standard deviation 

of Precision 

standard deviation 

of recall 

MBLS1 0.94075 0.93734 0.747 0.00980 0.00974 

MBLS2 0.94194 0.94329 0.545 0.00947 0.00704 

BLS 0.94345 0.93508 7.873 0.01176 0.01760 

PCA-BLS 0.93837 0.93750 5.781 0.01205 0.01328 

SAE-BLS 0.94057 0.93616 8.193 0.01369 0.01579 

It can be seen that when the data dimension increases, 

traditional BLSs (BLS, PCA-BLS and SAE-BLS) need to 

sacrifice training efficiency to get the models that meet the 

requirements. And, the proposed MBLSs can maintain high 

efficiency on high-dimensional data. This shows that the 

proposed MBLSs are more applicable to high-dimensional 

complex data, which is consistent with complex system 

application scenarios. When the data complexity is relatively 

low, traditional BLS is sufficient. There is no exact data 

complexity threshold, it is necessary to judge when to use 

MBLSs according to specific application scenarios and model 

performance. 

In fact, the complexity of simulation data is far less than that 

of real data, the improvement made by MBLSs can be more 

significant in real data. In addition, the simulation data is clean 

and evenly distributed, so the stability of the MBLSs can not be 

well reflected in this part. The above two issues will be further 

verified in the next Section. 

4. Case study 

Since designed according to the fault-oriented safety 

principle, HST brake control system is a typical complex system 

with multiple braking schemes. And, condition monitoring of 

the HST brake control system have always been one of the key 

technologies for safe transportation 4. In this section, using the 

actual monitoring data of a high-speed train (HST) brake control 

system within one-year operation, a comparative experiment is 

carried out to verify the effectiveness of the proposed two 

MBLSs and condition monitoring method (i.e. the Mix-MBLS). 

The HST brake control system and its monitoring dataset have 

not yet been publicly available. Under the confidentiality 

agreement, this paper only provides a rough description of the 

system structure and the monitoring data. 

The high-speed train brake control system includes 

pneumatic and electric devices, and combines various devices 

by microelectronics technology to achieve different functions. 

There are a variety of factors that can affect the health state of 
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the system. To comprehensively monitor these factors, sensors 

were installed at key locations based on expert experience, and 

the operation and environmental variables were recorded. 

Specifically, monitoring tools have been set up at key locations 

in the circuit system to collect information such as voltage, 

current, and temperature. Sensors have been set up in key 

components of the mechanical system to collect vibration 

signals, temperature, power, etc. And, state variables such as 

braking mode, traction level, train speed, position, and running 

time displayed by the software system, as well as environmental 

variables such as external temperature, humidity and weather 

are recorded. The collected raw monitoring data contains 38 

variables that may be related to the system state. To comply with 

the confidentiality agreement, these variables cannot be listed, 

and are only denoted as V1, V2. . . V38. 

 

Fig. 10. The rough process to verify the effectiveness of the 

MBLSs. 

1 The rough process to verify the effectiveness of the 

MBLSs is shown in Fig.10. To avoid the influence of 

random factors, average results under 5-fold cross-

validation are concerned. The commonly adopted deep 

learning methods, back propagation neural network 

(BPNN) 34 and CNN 31, as well as the basic BLS and 

feature extraction-based BLSs are considered as 

benchmark condition monitoring models. The feature 

extraction-based BLSs include PCA-BLS and SAE-BLS, 

i.e. the BLS with PCA and sparse auto-encoder (SAE), 

which are commonly used and often have good effects. 

Here, the cumulative contribution rate (CCR) selected in 

PCA is 85%, the SAE uses Sigmoid function as the 

activation function and contains one hidden layer. 

2 Moreover, advanced deep learning methods, which 

consider data structure information, are also used as 

comparison groups, including the correlation graph 

convolutional network (Corr-GCN) 29 and the causal 

graph convolutional network (Cal-GCN) 12. The Corr-

GCN is an undirected graph convolutional network (GCN) 

based on the correlation network of the monitoring 

variables. The the correlation network is obtained by 

setting a threshold value (i.e. 0.5) for correlation 

coefficients, i.e. if and only if the correlation coefficient of 

Vi and Vj is greater than 0.5, there is an edge between Vi 

and Vj. The Cal-GCN is a directed GCN based on the 

causal network of the monitoring variables. 

3 In addition, the structures of all the condition monitoring 

models are optimized by progressively adding layers, 

nodes and iterations until the generalization performance 

remains stable or decreased. And, initial hyperparameters 

of each model are set based on modeling experiences. The 

basic BLSs are initially set to contain 20 initial node 

groups with 10 nodes in each group, 10 characteristic node 

groups with 5 nodes in each group, and one incremental 

node group with 10 nodes. NNs (BPNN and CNN) are 

initially set to contain 3 hidden-layers with common used 

node parameters (8, 16, 32, etc.), and trained 100 times. 

And, GCNs (Corr-GCN and Cal-GCN) are initially set to 

contain 2 graph convolutional layers for structural 

information extraction, and 1 fully connected layer for 

fusing graph information. 

4.1. Data description 

There are 21 continuous numerical variables and 17 discrete 

category variables in the monitoring data. Firstly, these discrete 

category variables need to be converted to numerical values, by 

recording “TURE” as 1 and “FALSE” as 0 for the binary 

variables, and label coding the hierarchical variables from low 

to high. Then, Z-score standardization is considered to 

normalize continuous variables. Moreover, all faults are marked 

as abnormal states to improve the fault detection rate. The 
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system state, i.e. the sample label is denoted as Y, with abnormal 

state as 1 and normal state as 0. 

 

Fig. 9. The scatter diagram of (speed, current) after data 

preprocessing. 

After the above data preprocessing, there are 15982 normal 

samples and 287 fault ones, which shows that the preprocessed 

data is seriously imbalanced. And, from Figure 9, the scatter 

diagrams of (speed, current)), it can be seen that there is a strong 

intersection between the variable values of fault samples and 

normal ones. In fact, the values of other variables also have 

strong intersection. Due to the highly imbalanced and class-

overlapping of the monitoring data, F2-score is applied to 

compare the prediction effects of different classification models 

in this work. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
 (25) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)   (26) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)   (27) 

where 𝛽  is the weight adjustment index. When 𝛽 = 1 , the 

weight of recall is the same as that of precision. And, when 𝛽 >

1, the weight of recall is higher than that of precision. Actually, 

the recall of abnormal state for HST brake control system is 

more important, thus we set 𝛽 = 2 and use F2-score to compare 

the models. TP, TN, FP, FN respectively represent the number 

of true positive, true negative, fault positive and fault negative. 

𝐹2 − 𝑠𝑐𝑜𝑟𝑒 = 5 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(4∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
  (28) 

4.2. Condition monitoring based on Modified-BLSs 

Using the feature extraction mechanism in Section 2.2.1, with 

18 PCA factors extracting from 38 original features by setting 

the CCR as 85%, after using the LR algorithm and transforming 

the PCA factors, the relationship between V and Y can be 

described as the regression equation shown in Eq. 29. Due to 

the large number of variables, here we do not show all 

regression coefficient values in detail. 

𝑙𝑛(
𝑃(𝑌=1)

1−𝑃(𝑌=1)
) = 𝛽0 + ∑ 𝛼𝑖𝑉𝑖

38
𝑖=1 = −7.363 + 0.223𝑉1 −

0.003𝑉2+. . . . . . −0.011𝑉37 + 0.008𝑉38 (29) 

Thus, the MBLS-1 model can be obtained by constraining 

the value range of weight coefficient matrix 𝑾𝑒 𝑖  and offset 

matrix 𝜷𝑒 𝑖. 

The original 38 variables can be divided into three 

categories: objective features (including environmental factors 

and operation duration), human influence features (braking 

model, braking level, reaction time, etc) and system monitoring 

features (current, voltage, braking status, power, frequency, etc). 

According to practical experiences, objective features and 

human influence features are the ancestral nodes of system 

monitoring features, and there is no direct causal relationship 

between objective features and human influence features. Based 

on the above assumptions, the causal network of {V1, V2, …, V38, 

Y} obtained by PC algorithm with empirical constraints is 

shown in Figure 11. 

From the causal network in Figure 11, the SCE model shown 

in Eq. 30 can be used to describe the causal relationship. 

𝑃(𝑌 = 1) = 𝑓𝑌(𝑉4, 𝑉5, 𝑉12, 𝑉18, 𝑉23, 𝑉24, 𝑉33, 𝑉35, 𝑉36, 𝑉38, 𝜀𝑌)(30) 

To fully extract the dataset information, all the ancestor 

nodes of Y are traced layer by layer and used interactively to 

predict 𝑃(𝑌 = 1). fY(*) in Eq. 30 is also the Sigmoid function. 

Considering that the influence of time, temperature and 

humidity on the system failure rate generally shows a gradual 

upward trend of growth rate, their causal effects are set as 

exponential or square function. Other causal mapping functions 

are randomly selected in linear and nonlinear. In this case, 5 

feature extraction equations which are the first 5 best fitting Y 

can be obtained by ergodic method, and each equation is the 

basis for extracting one initial node group. Similarly, the value 

intervals can be set for the parameters to extract initial nodes in 

each group. Thus, the MBLS-2 model can be obtained based on 

these initial node groups.
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Fig. 11. The causal network of the HST brake control system(with green box representing parent node of Y and yellow box 

representing invalid node in this case).

 

Fig. 12. The final structure of the BPNN.  

Fig. 13. The final structure of the CNN. 
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The initial structures of MBLS-1 and MBLS-2 include 5 

initial node groups with 3 nodes, 5 characteristic node groups 

with 3 nodes, and one incremental node group with 5 nodes. 

And, to make all possible faults be detected, the prediction 

result of the Mix-MBLS model is “1” if at least one of the two 

proposed MBLS model output is “1”. By manually adjusting the 

model hyperparameters, the optimized BPNN and CNN are 

shown in Figures 12 and 13. And, GCNs have powerful feature 

extraction capabilities, the optimized Corr-GCN and Cal-GCN 

both contain 2 graph convolutional layers and 2 fully connected 

layers.

 

Fig. 14. Comparison training accuracy of different models.

Under the same operating environment and with 5-fold 

cross-validation test data, the average training effects of 

different models are shown in Figure 14, and the average 

generalization performances are shown in Table 6. It can be seen 

that each model has been well trained, which can be considered 

that there is no under-fitting problem. Since we optimized the 

model structures according to model generalization 

performances, there is no over-fitting problem in each model 

(This can also be seen from Figure 14).

Table 6. Comparison generalization performances of different models. 

Models Average Precision Average Recall Average F2-score Training time(s) standard deviation of F2-score 

MBLS1 0.93333 0.93241 0.93648 0.641 0.00401 

MBLS2 0.94627 0.94816 0.93835 0.813 0.00199 

Mix-MBLS 0.94064 0.95242 0.94509 0.931 0.00268 

BLS 0.87876 0.90134 0.88941 21.474 0.01491 

PCA-BLS 0.89078 0.89527 0.89136 19.622 0.01428 

SAE-BLS 0.89780 0.90505 0.89296 22.562 0.01869 

BPNN 0.92585 0.90667 0.91219 357.584 0.01823 

CNN 0.93750 0.92743 0.92604 579.739 0.01701 

Corr-GCN 0.92652 0.91547 0.91733 2205.882 0.00912 

Cal-GCN 0.91332 0.92487 0.92034 1433.393 0.00758 

According to the results of the comparative experiment, we 

can see that： 

1) The deep learning methods (BPNN, CNN, Corr-GCN and 

Cal-GCN) can deal with the data imbalance problem of this case 

and achieve good prediction performances. But, the model 

training process is time-consuming. 

2) GCNs (especially Cal-GCN) that consider data structure 

information have high stability, but the training process is much 

more time-consuming. 

3) By increasing the number of hidden-layer nodes, the 
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basic BLS may reach a high accuracy, but the training time is 

increased, making BLS unable to realize real-time training and 

updating. 

4) Feature extraction and dimensionality reduction for the 

input data based on common feature extraction methods (PCA 

and SAE) can improve the model performance, but the 

reduction on training efficiency is very limited. 

5) The proposed methods can significantly improve the 

mode training efficiency, which is reflected in that MBLSs can 

be retrained and updated online in complex system condition 

monitoring. 

6) The performances of the proposed MBLSs, i.e. F2-score, 

precision and recall, are better than the deep learning methods. 

At the same time, the training time of each MBLS is much lower. 

It shows that the condition monitoring method based on Mix-

MBLS can meet the requirements of real-time update and 

accurately prediction. 

7) Based on the proposed MBLSs, the training and 

generalization recall measures have been significantly 

improved, which indicates that the improved models can 

identify fault information more effectively. At the same time, 

the standard deviation of F2-score has been significantly 

reduced, which means that MBLSs and MiX-MBLS have 

higher stability in this case. 

8) In addition, the prediction fault set of the MiX-MBLS is 

just the union of the true positive and the fault positive samples 

in the two MBLSs. Thus, the recall of the MiX-MBLS is 

improved, while the precision is slightly decreased. This means 

that the integrated model by parallel fusion can diagnose faults 

more conservatively to ensure the system safety. 

4.3. Transferabil

 

Fig. 15. The process to verify the transferability.

The main improvement of the proposed BLS lies in the 

feature extraction efficiency of the initial node groups. Benefit 

from the adopted LR and structural causal equation, the initial 

node groups have high interpretability. Compared with the 

traditional BLS, the MBLSs proposed in this paper can provide 

some basis for model migration and optimization. When the 

operating environment changes, the state monitoring model can 

be easily adjusted to meet new scenarios. Limited by the 

available data, an example on the changing of operation time is 

considered to verify the transferability of the propose methods. 

Assuming that the data monitoring is intermittent, we want 

to use the historical data monitored a long time ago to build the 

current system condition monitoring model. This means that the 

degradation state and risk level of the system have significantly 

changed, and will be more susceptible to external environmental 

factors. Based on knowledge transfer, the migration models are 

built by fine-tuning the parameters in the original model. 

Concretely, fine-tuning the coefficients of environmental 

factors in the LR equation or the structural causal equation. How 

to adjust environmental factors and which environmental 

factors need to be adjusted are all judged by experts' experience. 

After the migration models are officially put into use, they can 

be further optimized according to the performance. 

Based on the MBLSs constructed from the operation data of 
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the previous half year, the migration models (MBLS'-1 and 

MBLS'-2) can be obtained by increasing the weights of 

environmental factors in the initial node groups. The weights of 

environmental factors in the initial node groups are increased by 

changing the absolute values of the coefficients of 

environmental variables (temperature, humidity and wind speed) 

in Eqs. 29 and 30. And, the monitoring data of the last month of 

the year is used as the test set to verify the effectiveness of the 

migration models.

 

(a) The confusion matrices of the original models 

 

(b) The confusion matrices of the migration models 

Fig. 14. Comparison of the number of different samples in the prediction results.

It can be seen that the performance of the migration models 

is better than that of the original models. By increasing the 

weight of environmental factors, the model is adaptive to the 

change of environments. Additionally, the samples collected in 

the emergence of a new environment can also be added to the 

migration MBLSs as incremental node groups to further 

optimize the models. In conclusion, interpretable diagnostic 

methods have higher application value in practice. 

5. Conclusions 

The timely and accurate condition monitoring for complex 

systems can greatly reduce the risk of potential faults. In this 

paper, a condition monitoring model is established based on 

broad learning system (BLS). The hidden-layer nodes in 

classical BLS need to be large enough to achieve satisfactory 

prediction accuracy in some scenarios, two Modified-BLS 

(MBLSs) are proposed in this work to improve the feature 

extraction efficiency of the initial node groups in BLS. In details, 

the LR equation and the structural causal equation are used to 

replace the totally random generation of the initial node groups. 

While a single model is often impossible to guarantee the 

prediction performance, the integration of different models is 

considered. So, the proposed MBLSs are combined (noted as 

Mix-MBLS).Several simulation datasets are used to verify that 

the proposed method can improve the feature extraction 

efficiency of BLS for high-dimensional data. And, based on real 

monitoring data of a high-speed train brake control system, by 

comparing with the deep learning methods (BPNN, CNN, Corr-

GCN and Cal-GCN) and traditional BLSs (BLS, PCA-BLS and 

SAE-BLS), it can be inferred that the proposed MBLSs can 

achieve higher accuracy in a much shorter time. And, Mix-

MBLS can achieve even better prediction results with slightly 

increased training time. This shows that the proposed model can 

be adopted to realize the online monitoring and alarm for 

complex systems. Moreover, this work also improves the 

interpretability of the initial node groups which makes the 

proposed model be capable of migrating effectively and 

conveniently to a new environment. Future research will 

continue to focus on improving the efficiency and 

interpretability of the BLS model.
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